Lignocellulose-derived thin stillage composition and efficient biological treatment with a high-rate hybrid anaerobic bioreactor system
نویسندگان
چکیده
BACKGROUND This study aims to chemically characterize thin stillage derived from lignocellulosic biomass distillation residues in terms of organic strength, nutrient, and mineral content. The feasibility of performing anaerobic digestion on these stillages at mesophilic (40 °C) and thermophilic (55 °C) temperatures to produce methane was demonstrated. The microbial communities involved were further characterized. RESULTS Energy and sugar cane stillage have a high chemical oxygen demand (COD of 43 and 30 g/L, respectively) and low pH (pH 4.3). Furthermore, the acetate concentration in sugar cane stillage was high (45 mM) but was not detected in energy cane stillage. There was also a high amount of lactate in both types of stillage (35-37 mM). The amount of sugars was 200 times higher in energy cane stillage compared to sugar cane stillage. Although there was a high concentration of sulfate (18 and 23 mM in sugar and energy cane stillage, respectively), both thin stillages were efficiently digested anaerobically with high COD removal under mesophilic and thermophilic temperature conditions and with an organic loading rate of 15-21 g COD/L/d. The methane production rate was 0.2 L/g COD, with a methane percentage of 60 and 64, and 92 and 94 % soluble COD removed, respectively, by the mesophilic and thermophilic reactors. Although both treatment processes were equally efficient, there were different microbial communities involved possibly arising from the differences in the composition of energy cane and sugar cane stillage. There was more acetic acid in sugar cane stillage which may have promoted the occurrence of aceticlastic methanogens to perform a direct conversion of acetate to methane in reactors treating sugar cane stillage. CONCLUSIONS Results showed that thin stillage contains easily degradable compounds suitable for anaerobic digestion and that hybrid reactors can efficiently convert thin stillage to methane under mesophilic and thermophilic conditions. Furthermore, we found that optimal conditions for biological treatment of thin stillage were similar for both mesophilic and thermophilic reactors. Bar-coded pyrosequencing of the 16S rRNA gene identified different microbial communities in mesophilic and thermophilic reactors and these differences in the microbial communities could be linked to the composition of the thin stillage.
منابع مشابه
Techno-Economic Analysis of Integrating First and Second-Generation Ethanol Production Using Filamentous Fungi: An Industrial Case Study
The 2nd generation plants producing ethanol from lignocelluloses demand risky and high investment costs. This paper presents the energyand economical evaluations for integrating lignocellulose in current 1st generation dry mill ethanol processes, using filamentous fungi. Dry mills use grains and have mills, liquefactions, saccharifications, fermentation, and distillation to produce ethanol, whi...
متن کاملComparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage.
A comparative evaluation of single-stage and two-stage anaerobic digestion processes for biomethane and biohydrogen production using thin stillage was performed to assess the impact of separating the acidogenic and methanogenic stages on anaerobic digestion. Thin stillage, the main by-product from ethanol production, was characterized by high total chemical oxygen demand (TCOD) of 122 g/L and t...
متن کاملUpgrading of Biological Treatment for Landfill Leachate by Nano-Membrane Systems
Treatment of landfill leachate is challenging, due to its characteristics such as age, dumping place, composition and origin of wastes. For this reason, the application of hybrid processes is helpful for complete treatment of contaminants present in the leachates. The addition of membrane operations to biological treatment technology offers new advantages for this method. For this aim, a bench-...
متن کاملIndustrial symbiosis: corn ethanol fermentation, hydrothermal carbonization, and anaerobic digestion.
The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By...
متن کاملIntegration of first and second generation bioethanol processes using edible filamentous fungus Neurospora intermedia
Establishing a commercial, lignocellulose-based, second-generation ethanol process has received several decades of attention by both researchers and industry. However, a fully economically viable process still remains a long-term goal. The main bottleneck to this achievement is the recalcitrance of lignocellulosic feedstocks, although there are several other factors, such as the huge investment...
متن کامل